UNDERSTANDING LED LUMINAIRE LIFETIME AND RELIABILITY

Fred Welsh, Radcliffe Advisors

- Wanted: A simple statement of product "life" for solid state lighting product
- Problem: The technology is too new to know just how and when it is likely to fail
 - Lumen depreciation has had a lot of press but it's not likely to be the determinant of product life
 - Getting a good answer right now means measuring a lot of product for a long time – impractical
- Conclusion: We don't have a good answer!

- Lumen maintenance lifetime (LML) is when a specific fraction of product has fallen below a stated percent of initial total lumen output
 - $lacktriangleq L_{zz}$ represents a level of zz% of initial luminous flux
 - \blacksquare B_{xx} designates xx% of product has failed
 - \blacksquare So LML is specified, for example, as "L₇₀/B₅₀"
- Many failure modes can cause low light, not just the LEDs
- But verifying this number is almost always prohibitively expensive
 - Accelerated testing of full luminaires isn't practical either
 - A statistical model based on subcomponent and material data may be best

^{*} LED Luminaire Lifetime: Recommendations for Testing and Reporting, May 2010

A Continuing Reliability Initiative

- □ An updated report was issued in June, 2011
 - □ Clarified that the loss of lumen output could be for any reason
 - Emphasized that LM-80 source data with TM-21 projection is not a proxy for lifetime
 - Provided options for interim specifications and for the treatment of color shift
- Established a new effort to work towards a statistical reliability model

LIGHT

NO LIGHT

7/17/2012

- "Failure" is an event which ends the useful life of a product
 - May need some definition if not evident, e.g. excessive lumen depreciation or color shift
 - May result from a design flaw, a manufacturing defect, or normal wear-out
 - May result from an interaction among otherwise longlived components or materials

- Reliability is the ability of a product to perform its required functions for a specific period of time
 - Often reported as mean time between failures (MTBF)
 - Especially useful for repairable systems, as it determines the average maintenance interval

- Lifetime is an estimate of how long a product is expected to operate as intended
 - Conventionally defined as "no light"
 - For LEDs, defined as "not enough light" (which might include no light) for ANY reason
 - NOT limited to lumen depreciation
 - Does not consider repair or replacement of parts
 - This definition does not include color shift, which we know is a problem for some applications

Typical Failure Behavior over Time

The "Bathtub" -

- High initial failure rate (infant mortality)
- Long period of low random failures
- Wear out period (end of life)

Distinguishing among failures

- Design flaws less common than in the past
 - Poor thermal management is most common
 - Other less-common design issues
 - Overdriving the LEDs or otherwise poor driver design
 - Use of incompatible chemicals, moisture ingress, etc.
- Manufacturing defects will always be with us, but can be minimized (infant mortality)
- "End of life" represents "normal" behavior of a welldesigned and made quality product
 - Usually involves several failure modes

Interim Recommendations for Color

Three categories, treated differently:

- Lamp replacements: Specify color in general terms for non-critical markets
- Standard grade luminaires: Specify maximum warranted color shift (CCT) and period of time (may be less than lifetime)
- Specification grade luminaires (and lamps): Maximum color shift over stated lumen lifetime should be provided

A Reliable, Quality Product Means...

- Overall design for reliability appropriate to the application
 - Longer life can help justify price premium, but it need not be "forever"
- Few initial (infant failures)
 - No inherent design flaws
 - High-quality manufacturing with few defects
- □ A low rate of random failure during normal life
- □ Relatively tight distribution of normal wear-out

Hypothetical Example

- Simplified 2-failure-mode "made up" system Driver and LED Source
- Mean time to failure for driver is 55K hours and for LEDs 60K hours
- Joint system failure of half the product would be about 53K hours
- Key things to learn:
 - "Life" is a statistical measure
 - All failure modes can contribute, even if closely matched

What should the Warranty Say?

- □ "60,000 hours"?
 - □ "60 years"?
- □ "53,000 hours"?
 - □ "48.4 years"?
 - □ "22.8 years"?
 - "35 years"?

A System Reliability Approach

- Testing full luminaires is time consuming and expensive; we need a better way
- Separate subcomponent reliability data could provide a basis for statistical system reliability design
 - Standardized reporting formats are needed
 - Protocols are needed to estimate system reliability using subcomponent data
- Accelerated methods for testing could help for both subcomponent statistics and for luminaire verification
- All of this requires an industry-wide cooperative effort, but the potential benefits are great

What Can I Do Right Now?

- Consider alternatives to truly verified lifetime:
 - Don't claim a lifetime; state a warranty
 - State the predicted source L₇₀ but don't call it "life"
 - State the predicted depreciation for a given time
- Contribute to the development of a statistical model
 - Join the LED System Reliability Consortium
 - Contribute subcomponent and materials reliability data and field data to the effort
 - Don't encourage misrepresentations of "life"

Learn More

The second edition of the DOE/NGLIA working group recommendations

On the SSL website www.ssl.energy.gov

LED LUMINAIRE LIFETIME: Recommendations for Testing and Reporting

> Solid-State Lighting Product Quality Initiative

Next Generation Lighting Industry Alliance with the U. S. Department of Energy